
January 14, 1996

1 of 6 The GloMop Client-Side Architecture

The GloMop Client-Side
Architecture

GloMop Group
glomop@full-sail.cs.berkeley.edu

1.0 Design Requirements

Because GloMop will run on many diverse platforms that are memory- and CPU-
impoverished, we establish the following design requirements:

• “Well-behaved” code that is as platform-independent as possible. Translating
between C-like languages should be trivial. Machine dependencies (e.g. memory
allocation API) should be isolated into small, easily-rewritable modules.

• Small memory footprint.

• Modest computational requirements.

• Keep It Simple, Stupid: economy of mechanism wherever possible.

2.0 Overview of Design

The GloMop components are:

1. GloMop client interface: implements the interface seen by applications, as described
in the document GloMop Client API, by interacting with the remaining components.

2. Network Manager: provides chunk delivery and abstraction of the network protocol
and interface, and asynchronous signalling of various interesting error and non-error
conditions to the GloMop layer (which can forward the signals to applications, if
desired).

3. Chunk Manager: provides local storage of chunks, transparent postprocessing
(decryption, decompression, transcoding to native formats), and notification to Glo-
Mop that chunks are ready.

4. Network protocol stack: TCP, or something like it.

Notes on the Block Diagram

2 of 6 The GloMop Client-Side Architecture

5. A future component not shown is the cache, whose contents survive across sessions.
Much remains to be worked out for the cache implementation, so we punt on it for
the time being.

Figure 1 is a block diagram of the GloMop client side.

FIGURE 1. Overall GloMop client layer architecture

3.0 Notes on the Block Diagram

1. CM=Chunk Manager, CS=Chunk Scheduler, SSM=subtype-specific module. The
generic modules crypt and comp (encrypt and compress) are available for all sub-
types. There may be multiple versions of each of these depending on the number of
encryption and compression algorithms known by the client.

2. The CM Out Of Memory (CMOOM) error is propagated through the Chunk Sched-
uler for two reasons. First, CS already requires an out-of-band signalling channel to
GloMop, which can be used to deliver CMOOM to the application so it can take
appropriate action (or at least display an alert). Second, CMOOM can serve as a hint

ReqID Chk# Stat Prio

CS CM

Crypt

SSM

SSMSSM

Comp

SSMNetwork Stack

Session
state

CS_NOTIFY
CS_CMOOM

CS_NOCARRIER
CS_SUSPEND

CS_QUERY
CS_DEQUEUE
CS_QUEUE
CS_OPEN/CLOSE

Chunks

Packets Chunks

Hormel
Chunks

CM_GOTCHUNK
CM_BLEWCHUNK

CM_OOM

GloMop

Application Application

Session state
Per-application state

Stateless

}

}
Stateless}

{Chunk
queue
state

Chunk Scheduler

The GloMop Client-Side Architecture 3 of 6

to CS to stop scheduling chunk requests, since there will be nowhere to store the
data.

3. Calls from CS to GloMop, which GloMop can pass on to the client application if the
application has asked to be notified of the corresponding events:

• CS_NOTIFY: An interesting network event has occurred (change of bandwidth,
etc.)

• CS_CMOOM: The Chunk Manager has run out of memory. This is a propagated
version of the CM_OOM signal from CM to CS.

• CS_NOCARRIER: The connection to the proxy was unexpectedly lost.

• CS_SUSPEND: A handoff is in progress; operation is temporarily suspended.
The application need not do anything special, but may want to alert the user.

4. Calls from GloMop to CS:

• CS_QUERY: Query the status of an outstanding chunk request. Possible replies
are Pending, Sent, Acknowledged, InProgress, Flushed.

• CS_QUEUE: Enqueue a new chunk request.

• CS_DEQUEUE: Dequeue a chunk request, or all chunk requests corresponding
to a particular ReqID.

• CS_OPEN/CS_CLOSE: Open a connection to the proxy to start a session, and
perform two-way authentication. CS_CLOSE ends the session and closes the
connection.

5. “Hormel format” refers to a chunk encoding that is ready-to-eat with respect to an
application, i.e. a native format data structure.

6. Calls from CM to GloMop:

• CM_GOTCHUNK: A requested chunk has arrived and has been successfully
postprocessed by the appropriate SSM’s.

• CM_BLEWCHUNK: A requested chunk arrived at the CM, but an error
occurred while postprocessing it using SSM’s.

7. Document state is maintained for each open document; it includes QOS prefs and a
record of which chunks have been fetched and which are outstanding for that docu-
ment. Session state includes authentication, default QOS parameters, and a specifi-
cation of how to handle various kinds of network state changes (notify user, switch
to different default QOS, etc.)

4.0 Chunk Scheduler

CS provides GloMop’s only view of the network. It understands the concept of a chunk
and can reassemble network packets if necessary to reconstitute chunks. CS manages a
priority queue for chunk requests and delivers chunks to the Chunk Manager as they
arrive. GloMop can query and delete items from this queue. CS can asynchronously
signal certain conditions to GloMop, as described above. CS is also responsible for
establishing the initial connection to the proxy, including the exchange of authentication
information.

Chunk Manager

4 of 6 The GloMop Client-Side Architecture

CS performs communication by dealing with an underlying transport layer that pro-
vides a protocol meeting the following minimum criteria:

1. Packet ordering can be requested if needed. If packets can be 1-2 Kbytes in size,
packet ordering will rarely be needed, since a chunk will fit in a packet and GloMop
manages data at the chunk level anyway. Possibility: perhaps chunk size should be
chosen dynamically by proxy based on network packet (MTU) size.

2. Reliable delivery, or at least reliable error detection.

3. Out-of-band urgent signalling possible.

If multiple network interfaces are being used, CS demultiplexes requests onto them
based on request priority, QOS and power consumption considerations.

All protocol details, including flow and congestion control, retransmission, and byte-
stream encoding, are hidden from other GloMop components by CS.

5.0 Chunk Manager

When chunks of a particular document have arrived from the proxy, they reside in the
Chunk Manager, a local cache within the GloMop layer, until they are delivered to the
client application (after postprocessing via an appropriate SSM). Chunks are indexed
by the unique ID of the document of which they are a part, and a chunk index (sequence
number) within that document. When a chunk is delivered to CM by CS, CM passes the
chunk data through the appropriate SSM’s if necessary, and then notifies GloMop that
the chunk has arrived. Since GloMop maintains per-document state, it can detect when
a “threshold” number of chunks of a particular document are ready, and notify the client
application. (See the separate document GloMop Client API for details on how the cli-
ent application specifies this threshold to GloMop.) The rationale is that the application
doesn’t want to be notified until enough of a document has arrived to do something use-
ful with, but the Chunk Manager can be made simpler by not requiring it to manage per-
application state.

When a client application is done with a chunk, it signals CM (via GloMop) to release
the chunk, which frees its memory for new incoming chunks. An application may copy
a chunk when the chunk becomes available, and then release the chunk immediately; or
it may maintain a pointer into the appropriate CM buffer and manipulate the chunk data
there directly (read-only). In any case, after releasing a chunk, the application promises
never to dereference that pointer again.

Note that since CM does not forcibly push chunk data to the application, it can run out
of chunk memory. Continued operation depends on prudent cooperation among appli-
cations. We will see how robust the resulting system will be; the rationale behind this
design decision was to avoid forcing an additional copy for each chunk from CM to the
application (presumably, chunks already must be copied from CS to CM, since the
former probably manipulates a small fixed set of network buffers).

Decompression, Decryption, and SSM’s

The GloMop Client-Side Architecture 5 of 6

6.0 Decompression, Decryption, and SSM’s

The generic transformation library provides commonly required data transformation
services such as end-to-end encryption and compression. The chunk manager performs
decompression and decryption before returning chunks to the application.

Subtype-specific modules are dynamically loadable software extensions that can
transcode chunks into a platform-native format. Their counterparts on the proxy side
can transcode source documents into either “standard” or platform-native formats. For
example, if the proxy has a proxy-side module that can create MagicCap images, it can
transmit images to the PDA that can be displayed without transcoding; if not, it can
transmit a “standard” format such as GIF for which the client has an SSM that can
transcode to the native format. We have observed significant transcoding latency on the
PDA, so a proxy-side transcoder is usually desirable; SSM’s allow the PDA to render
documents even when the proxy doesn’t have the appropriate transcoder.

The separate document GloMop Proxy-Side Architecture describes how the proxy
determines the target format for a particular document.

7.0 Data Structures

7.1 Chunk

The following describes the encoding of a chunk. The original data contains m bytes;
the representation in the chunk contains n data bytes, where n may differ from m if end-
to-end encryption or compression is used. Multibyte quantities are stored in network
byte order. Strings are stored as a length byte followed by up to 254 data bytes; a length
byte of 255 indicates a string longer than 255 characters with a terminating null.

Comments: Do we need 4-byte fields? Is 64K bytes enough for an individual chunk
and for the ReqID and sequence number?

TABLE 1. Chunk Encoding

Field # bytes Data

ReqID 2 Request ID of document of which this chunk is
part

Chk 2 Chunk number within document

Type s+1 Chunk type/subtype encoding as string

RawSize 2 Number of bytes to follow

DL s+1 Doc locator for refining this chunk, as string

MDS 2 Number of bytes of chunk-specific metadata fol-
lowing; will usually be zero

Unresolved Issues

6 of 6 The GloMop Client-Side Architecture

8.0 Unresolved Issues

• Should document uploading be incorporated into this overall design, or does the
asymmetry of document uploading imply the presence of additional compo-
nents? (Certainly the SSMs, the transport layer, and the generic transformation
library can be reused.)

• As always, how do time-critical stream documents fit into this scheme?

• How many threads are required within GloMop? One to handle requests from
applications; one for the Network Manager; maybe one in the low-level network
stack; any others? The Network Manager thread can be used for upcalls into
GloMop.

MD s Chunk metadata

EncrType 2 Encryption type, 2-letter string; 00 means none

CompType 2 Compression type, 2-letter string; 00 means none

Osize 2 Size of data after decryption & decompression

Dsize 2 Number of data bytes to follow

Data n Chunk data

TABLE 1. Chunk Encoding

Field # bytes Data

